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EXECUTIVE SUMMARY

Hydrogeologic Assessment of the Tucannon River, Pataha Creek, Asotin Creek
Drainages, WRIA 35, Columbia, Garfield, and Asotin Counties, Washington

Report date: 18 May 2005

A hydrogeologic assessment of the portion of WRIA 35 generally lying within the Asotin Creek,
Tucannon River, and Pataha Creek drainages was conducted using previously prepared and
existing reports, maps, and well information. The objective of the assessment was to summarize
basic groundwater conditions in the project area to the extent possible given the existing
information. Except for a general reconnaissance of the area, no fieldwork was done for this
assessment. The assessment identified the main geologic units underlying the project area and
evaluated the relationship between these units and groundwater occurrence and movement,
summarized the possible effects of geologic structure (folds and faults) on groundwater
distribution, and presented a basic conceptual model of probable groundwater occurrence and
movement beneath the project area.

The predominant geologic unit underlying the project area, and the unit that hosts the most
widespread aquifers, is the Columbia River Basalt Group (CRBG). The CRBG is overlain by a
series of relatively localized clastic deposits (clay, silt, loess, sand, and gravel) and underlain by
widespread (but very deep) metamorphic rocks. The sediments overlying the CRBG host
generally localized aquifers, referred to as the suprabasalt sediment aquifer system, while the
underlying metamorphic rocks contain little or no usable groundwater. General geologic and
hydrogeologic conditions in the project area are summarized below.

Sediments overlying the CRBG

The sediments which overlie the CRBG consist of a variety of wind-deposited to water-
deposited strata. These strata typically are localized in stream valleys or covering deeply eroded
upland areas.

Alluvial deposits: Generally coarse, well-bedded, stream-rounded, basaltic, alluvial clastic strata
(predominantly sand and gravel) are found as thin (generally less than 50 feet thick) deposits
partially filling many valley and canyon bottoms. More angular to blocky, commonly muddy
gravel and debris also is found at the mouths of small canyons feeding into the larger valleys
and in landslide and talus deposits at the base of steep slopes and canyon walls. These coarse
basaltic alluvial deposits range from Pleistocene to Holocene in age (possibly older than
700,000 years to present).

Loess: Loess is a wind deposited silt and very fine sand. It mantles most of the upland areas
within the project area lying between the edge of the Snake River canyon and the Blue
Mountains. The loess, also referred to as the Palouse Formation, is deeply incised by stream
erosion and rarely more than 100 feet thick. It is potentially early Pleistocene to late Pleistocene
in age (>750,000 to 10,000 years).

Cataclysmic flood deposits: Localized accumulations of well bedded mixed lithology (basalt,
quartzite, granite, gneiss, metavolcanics) pebble to boulder gravel and sand are found in the
Snake River Canyon and at and near the mouths on many tributary valleys. Cataclysmic flood
deposits in the Snake River canyon commonly form large bars that stretch for a half mile or
more along the floor of the canyon. These mixed lithology deposits were lain down by
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Pleistocene Cataclysmic Floods (Missoula Floods and Bonnevile Flood) that periodically
inundated the Snake River Canyon and its tributaries. The Missoula Floods also deposited the
well bedded, silt and sand (referred to as Touchet Beds) commonly seen in Snake River
tributary canyons throughout the project area.

Suprabasalt sediment aquifer system: The suprabasalt sediment aquifer system is found
predominantly in valley filling alluvial gravel and Pleistocene Cataclysmic Flood sand and
gravel. This aquifer system generally consists of multiple, local, unconfined groundwater-
bearing zones that are less than 5 to 40 feet below ground surface, less than 50 feet thick. The
distribution of this system is controlled by the physical extent of the deposits and the location of
bedrock in and adjacent to the valleys the aquifer is found in. Generally there is little or no
hydrologic continuity between the parts of this aquifer system located in different stream valleys.
However, this aquifer probably does typically have a high degree of hydrologic continuity with
nearby streams, both discharging to and receiving discharge from them. Given the generally
uncemented character of the sand and gravel which seems to host this aquifer system it is
inferred generally to have high porosity.

Columbia River basalt

The middle to late Miocene (17,500,000 to 6,500,000 years) Columbia River Basalt Group is the
main geologic unit underlying the project area. It is the product of several hundred huge volcanic
eruptions which inundated the region under thousands of feet of basalt lava flows. Most CRBG
basalt flows occur as sheet flows which form laterally widespread, planar-tabular sheets (or
layers). Each basalt flow has a top and bottom where porous and permeable rock is found. The
interiors of these flows generally consist of dense, glassy basalt which has low to no porosity
and permeability unless disturbed by deformation or erosion. While widespread, these sheet
flows do terminate. Their lateral extent is controlled by erosion, faulting, and the original extent
of the basalt flow. A small number of CRBG basalt flows where emplaced in and filled pre-
existing canyons and valleys and form narrow, elongate, ribbons which are referred to as
intracanyon flows. The CRBG is subdivided into multiple units which are summarized below.

Saddle Mountains Basalt: This is the youngest (13,500,000 to 6,500,000 years) and aerially
most limited CRBG unit in the project area. Eight Saddle Mountains units are present in the
Asotin area where they occur as very small sheet flows and/or as intracanyon flows. Elsewhere
in the project area, Saddle Mountains units only occur as intracanyon flows which are generally
restricted to the vicinity of the Snake River canyon.

Wanapum Basalt. The Wanapum Basalt consists predominantly of sheet flows subdivided into
the Roza Member (1 flow), Frenchman Springs Member (3 to 6 flows), and Eckler Mountain
Member (3 or more flows). Wanapum sheet flows are found across much of the area. However,
they have limited lateral continuity because the modern drainage has cut canyons which erode
completely through the Wanapum in many areas. Where it has not been removed by erosion in
the project area, the Wanapum Basalt usually is several hundred feet thick. Feeder dikes for the
eruptions that feed at least the Roza Member are present in the Asotin drainage.

Grande Ronde Basalt: The Grande Ronde Basalt, which underlies the Wanapum Basalt, is the
most widespread and voluminous CRBG unit, underlying almost the entire project area and

comprising over 85% of the CRBG although it was emplaced in a relatively short period of time
(15,600,000 to 14,500,000 years). In the project area it consists of dozens of flows subdivided
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into 4 magnetostratigraphic units (from top to bottom, N, Ry, N4, and R;).The depth of erosion
into the Grande Ronde Basalt generally increases upstream on the Snake River and its
tributaries (including the Asotin, Tucannon, and Pataha drainages). Grande Ronde sheet flows
typically become more widespread and thicker away from the crest of the Blue Mountains. In the
project area the Grande Ronde Basalt usually is several thousand feet thick. Feeder dikes for
eruptions that feed many Grande Ronde flows are present in the Asotin drainage.

Imnaha Basalt: The Imnaha Basalt, the oldest CRBG unit, is not exposed at the Earth’s surface
in the project area. Beneath the project area it is inferred to consist of several sheet flows that
buried an irregular, pre-existing land surface.

Ellensburg Formation: The Ellensburg Formation consists of thin claystone, mudstone,
sandstone, and conglomerate interbedded between some CRBG units, especially in the Saddle
Mountains Basalt. Ellensburg units are most common in the Asotin area where they crop out on
canyon walls.

Folds and faults: The CRBG (and Ellensburg Formation) is deformed by folding and faulting.
Throughout the project area CRBG layers generally dip to the north, northwest, and northeast
off the crest of the Blue Mountains towards the Snake River. In the Asotin Creek drainage this
general dip is interrupted by a series of north-south faults in the area where the creek forks and
by several low amplitude anticlines and synclines in the lower part of the drainage. To the west,
in the Pataha and Tucannon drainages, the generally north-northeast trending Hite fault system
cuts through and offsets CRBG units by hundreds of feet.

CRBG aquifers: Groundwater within the CRBG generally is found in flow tops and flow bottoms,
with the top of one flow and the bottom of the overlying flow referred to as an interflow zone.
These interflow zones are separated by dense flow interiors which essentially block significant
movement of groundwater between successive interflow zones. Consequently, groundwater in
the CRBG generally occurs in multiple, stacked, confined aquifers which have limited hydrologic
continuity. CRBG aquifers can be very productive (having very high hydraulic conductivity and
transmissivity), although they can be easily depleted (because of very low storativity) if pumping
exceeds recharge. Groundwater flow direction within an interflow zone generally is in the down-
dip direction of the zone. Given the regional dip of the CRBG in the project area, off the Blue
Mountains towards the Snake River, groundwater flow in CRBG aquifers generally is towards
the Snake River.

Interflow zone aquifers are as widespread as the geologic units they belong to. Consequently,
potential aquifers in the Saddle Mountains basalt (dominated by intracanyon flows) are narrow
and elongate whereas those in the sheet flow dominated Wanapum and Grande Ronde Basalts
are thin, but potentially laterally extensive. The lateral continuity of potential Wanapum and
Grande Ronde aquifers in the project area is largely controlled by depth of erosion, flow edges,
faults, and feeder dikes. The more each of these features are overprinted on the Wanapum and
Grande Ronde, the more restricted lateral continuity of potential aquifer becomes. Erosion
appears to be the predominant control on the lateral continuity of Wanapum aquifers. Faults and
feeder dikes may affect the lateral continuity of Grande Ronde aquifers.

Because flow interiors are relatively impermeable, recharge to CRBG interflow aquifers occur
where the interflow zone crops out at the Earth’s surface. These locations have to be where
surface water and/or precipitation are present and can infiltrate into the ground. Conversely,
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discharge from these aquifers generally has to be where these interflow zones terminate at or
near the surface (such as in deeply eroded canyons) or other aquifers. Based on the extent of
interflow zone aquifers in the various CRBG units with respect to potential recharge areas,
lateral continuity, and location Saddle Mountains and Wanapum aquifers are inferred to be of
limited extent and low, sustainable productivity (<100 gpm). Grande Ronde aquifers should be
more productive, but the relative lack of deep, high capacity, water production wells in the
project areas makes any prediction of Grande Ronde aquifer production premature.

Pre-CRBG rocks

The rocks underlying the CRBG crop out in small areas in the bottoms of several canyons in the
project area. These rocks consist of metamorphic volcanic and sedimentary rocks having limited
porosity. Pre-CRBG rocks probably are not a source of significant groundwater in the project
area.

Conceptual Groundwater Model

The suprabasalt aquifer system typically contains the shallowest groundwater in the project
area. However, this system generally is localized in stream valleys and canyons, relatively thin
(only a few tens of feet), and usually in direct hydrologic continuity with nearby streams.
Consequently, impacts to one (increased pumping, decreased recharge, etc.) will affect the
other. Groundwater flow in this system is inferred to be relatively rapid and directly influenced by
bedrock topography in the valley bottom.

The CRBG aquifer system essentially consists of a series of inclined, stacked, confined
aquifers. These aquifers generally dip off the crest of the Blue Mountains towards the Snake
River. The degree of hydrologic continuity between these aquifers is limited to areas where
erosion, faulting, and/or flow edges terminate the flow interiors which separate aquifers.

Most Saddle Mountains and Wanapum interflow zone aquifers crop out on relatively arid canyon
walls within the project area, suggesting relatively little recharge to these potential aquifers.
This, coupled with their limited lateral continuity, suggests groundwater production from most
aquifers hosted by these units is limited. The well records examined for this assessment, which
show must wells in these units produce less than 150 gpm, support this conclusion.

Many Grande Ronde interflow zones crop out in well watered canyons and higher precipitation
areas of the Blue Mountains. Given this, these potential aquifers may see significant recharge.
Discharge from individual Grande Ronde aquifers is inferred to be limited to deep canyons that
cut each aquifer and generally non-existent from Grande Ronde aquifers which are not
truncated by deep erosion in down gradient areas. Consequently, discharge from the Grande
Ronde to the Snake River is inferred to be limited to absent. The combination of potentially good
recharge and limited discharge suggests Grande Ronde aquifers have the potential to yield
large volumes of water. However, the presence of feeder dikes and faults cross-cutting these
aquifers has the potential to limit there continuity, and hence potential production. In addition, so
few large volume production wells tap these aquifers that any conclusion regarding their
production potential is premature.
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Section 1: Introduction

This report presents a hydrogeologic assessment of the portion of WRIA 35 generally lying
within the drainages of Asotin Creek, the Tucannon River, and Pataha Creek, in southeastern
Washington (Figure 1). The purpose of this assessment is to summarize basic geologic and
hydrogeologic conditions within this area to the extent possible using the available data and
information. The types of geologic information summarized include basic stratigraphy, physical
geology, and structure. Hydrogeologic information summarized in this assessment includes the
nature and characteristics of the main aquifers, groundwater levels and flow directions, water
well pumping information, and water quality. For the remainder of this report the combined
Asotin Creek, Tucannon River, and Pataha Creek drainages are collectively referred to as the
project area.

This assessment is based almost entirely on previously published and readily available
information. This information includes reports the team has on-file or could get access to from
various agencies and libraries, geologic maps, water well reports in the Department of Ecology
website, and water level information available from the U.S. Geological Survey website
(http://NWIS.waterdata.usgs.gov/IMWIS/gwlevels). Water well information summarized for this
report is compiled in Appendix A. A two-day field reconnaissance was conducted for the project
to review basic area surface conditions. No invasive subsurface investigation was done for this
project.

The information summarized in this report is organized into sections describing:

1. Study area geologic setting, including suprabasalt sediments, Columbia River basalt,
and structural features

2. Study area hydrogeologic setting, including suprabasalt sediment aquifers and basalt
aquifers

3. Conclusions, including a basic conceptual hydrogeologic model

The project area encompasses much of the northern portions of Asotin (exclusive of the
Clarkston area), Columbia, and Garfield Counties (Figure 1). It is generally bounded on the
north, east, and west by the Snake River and on the south by the crest of the Blue Mountains.
This hydrogeologic assessment focuses on the Asotin Creek, Tucannon River, and Pataha
Creek drainages. Headwaters for each of these drainages generally are found in the northern
part of the Blue Mountains. Asotin Creek generally flows to the east-northeast to the Snake
River. The Tucannon River and Pataha Creek generally flows northwest towards the Snake
River. Pataha Creek flows into the Tucannon River, which in turn flows into the Snake River.

In the upper reaches of these streams, the landscape is mountainous, with peaks and ridges
rising to elevations over 5500 feet above sea level. Asotin Creek, the Tucannon River, and
Pataha Creek, and their tributaries, occupy canyons cut hundreds to over 1,000 feet into this
mountainous terrain. This mountainous terrain dominates the southern quarter of the project
area. For this assessment the Blue Mountains portion of the project area generally is defined as
that part of the area covered by wooded ridges, valleys, and peaks and lying within the Umatilla
National Forest.
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The central, northern, and eastern parts of the project area consists of a generally north,
northwest, and northeast sloping upland surface that decreases in elevation towards the Snake
River. This upland surface is covered by a hilly topography and cut by numerous ravines and
canyons which form the area’s drainage. These canyons and ravines can be hundreds of feet,
to over one thousand feet, deep. The Snake River, which occupies a deep canyon cut into this
upland surface, forms base level for all area streams and marks the northern and eastern edges
of the project area.

The Kennedy/Jenks Consultants project team was lead by Dr. Kevin Lindsey, L.Hg. and
included Mr. Terry Tolan, L.Hg. and Mr. Jon Travis. Dr. Lindsey was the lead hydrogeologist.
Mr. Tolan provided additional hydrogeology support and Mr. Travis provided technical support,
including compilation of well data.
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Section 2: Geologic Setting

Physical geology exerts a fundamental influence on the hydrologic properties of aquifers and
hence the movement and distribution of groundwater. Therefore, a basic understanding of area
geology is fundamental to providing a basic framework for understanding groundwater
occurrence and aquifer properties. The purpose of this section is to present a review of the
geology of the Asotin Creek, Tucannon River, and Pataha Creek drainages and provide this
basic physical framework for understanding area groundwater and aquifer conditions.

Geologic mapping of the WRIA 35 region has been conducted by a number of investigators over
the years (e.g., Huntting, 1942; Hammatt and Blinman, 1977; Kienle, 1980; Swanson and
others, 1979a, 1980; Hooper and Webster, 1982; Hooper, 1985; Hooper and others, 1985;
Swanson and Wright, 1978; Stoffel, 1984; Schuster and others, 1997; Gulick, 1994). The
Washington Division of Geology and Earth Resources has compiled and published 1:100,000
scale geologic maps (Schuster, 1994; Gulick, 1994) that cover the WRIA 35 region. Major
stratigraphic units found within the WRIA 35 area, from oldest to youngest, are (Figure 2):

e |Isolated pre-Tertiary igneous and metamorphic rock inliers in bottom of the Snake River,
Tucannon River, and Menatchee Creek canyons;

e Middle to late Miocene flood basalt flows and feeder dikes of the Columbia River Basalt
Group (CRBG) and interbedded continental sediments (Ellensburg Formation);

e Miocene to Pleistocene gravels found along the Snake River and Grande Ronde River
canyons and in the Lewiston Basin;

e Pleistocene Cataclysmic Flood deposits (Missoula and Bonneville Floods) found along
the Snake River canyon and some of the larger tributary canyons (e.g., Tucannon River)
below the 1,200 ft elevation;

e Pleistocene to Holocene loess of the Palouse Formation;

e Pleistocene to Holocene mass-wasting deposits consisting of talus and landslide
deposits;

e Late Pleistocene to Holocene alluvium deposited by rivers and creeks in valley bottoms.

The general physical characteristics of these stratigraphic units within the project area are
summarized in the following sections. Surface soils are not discussed in this assessment
because of its regional emphasis and the relatively minor role soils play in groundwater
occurrence and distribution in the project area. The following discussion generally proceeds
from the youngest to oldest units.

2.1 Quaternary deposits

Quaternary deposits consist of a variety of basic units. For the purpose of this review these
strata are referred to as: (1) Pleistocene Cataclysmic Flood deposits, (2) loess of the Palouse
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Formation, (3) mass-wasting deposits, and (4) alluvium. The basic characteristics of these strata
are summarized in the following sections.

211 Pleistocene Cataclysmic Flood Deposits

Largely uncemented, typically poorly indurated, well-stratified interbedded silt and sand, sand,
gravelly sand, and pebble to boulder gravel is present in the Snake River canyon and tributary
valleys, (Bretz and others, 1956; Rigby and others, 1979; Myers and Price, 1979, 1981; Waitt,
1985; Fecht and others, 1987; US DOE, 1988; Kiver and others, 1989; McDonald and Busacca,
1989; Baker and others, 1991). These strata have been interpreted as having been deposited
by the Pleistocene Cataclysmic Floods that were released from glacial Lake Missoula
periodically between approximately 1,000,000 and 12,000 years ago and glacial Lake
Bonneville less than 10,000 years ago (Bretz and others, 1956; Baker and Nummedal, 1978;
Rigby and others, 1979; Myers and Price, 1979, 1981; Webster and others, 1982; Waitt, 1985;
Fecht and others, 1987; US DOE, 1988; Kiver and others, 1989; McDonald and Busacca, 1989;
Baker and others, 1991).

Where present, Pleistocene Cataclysmic Flood deposits range from a few feet (<1 m) thick to
more than 200 feet (+60 m) thick (Grolier and Bingham, 1971, 1978; Myers and Price, 1979,
1981; Fecht and others, 1987; USDOE, 1988; Baker and others, 1991; Lindsey and others,
1994). Pleistocene Cataclysmic Flood deposits are commonly divided into three basic sediment
types (facies) which commonly form the basis for subdividing the flood deposits into map units.
These facies include the following:

e |Intercalated, well stratified silt and fine- to coarse-grained sand forming normally graded
(fining upwards) beds that range from inches (few centimeters) to several feet (tens of
centimeters) thick (Figure 3).

m This facies, also known as Touchet beds, is found predominantly on highland
surfaces (ridges) and localized in valleys tributary to the Snake River.

e Laminated to massive, uncemented, felsic to basaltic, fine- to very coarse-grained sand.
These sands can contain thin, lenticular silt to fine gravel interbeds. Where the silt
content is low, a well-sorted and open-framework texture is common. Where the basalt
content in these deposits is high, they are often referred to as “black sands” because of
the dark gray to black color caused by the high basalt content.

m This facies appears to be relatively rare in the project area. If present, it is inferred to
comprise some of the large flood deposited bars found downstream of the mouth of
the Palouse River in the Snake River canyon and near the mouths of tributary
canyons.

e Well-stratified to massive, uncemented, unweathered, mixed lithology (although basalt
content is usually high) pebble to boulder gravel (Figure 4). Interstitial matrix in this
facies generally ranges from absent to predominantly coarse sand and granules. Where
these strata contain little or no matrix sand they commonly have an open-framework
texture where open intergranular pores are readily apparent to the unaided eye. This
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facies may be locally muddy, although such fine content does not appear to be
widespread.

m Flood-deposited gravel is found intermittently in the Snake River canyon and in the
lowermost reaches of tributary streams. In the Snake River canyon these deposits
commonly form large gravel terraces and bars in the bottom of the canyon that may
be capped by large-scale “mega-ripples”. Flood deposited gravel also is found
forming terraces in tributary canyons and on the west sides of ridges protruding into
the Snake River canyon several hundred feet above the current river level. A number
of these features are found near the mouth of the Tucannon River and on the Snake
River opposite and downstream of the City of Asotin.

Another feature common to the flood deposits is clastic dikes (Black, 1979; Myers and Price,
1981, Fecht and others, 1999). Clastic dikes usually consist of alternating vertical to subvertical
layers of silt, sand, and granule gravel less than 0.5 in (~1 cm) up to 6 ft (2 m) thick (Figure 5).
Clastic dikes typically cross-cut bedding, although they do locally parallel bedding. Where dikes
intersect the ground surface, a polygonal feature visible from the air and known as patterned
ground is observed. Clastic dikes are generally best developed in the interstratified silt and sand
facies and to a lesser extent in the sand-dominated facies.

2.1.2 Loess

The surface materials covering much of the upland surface between the Snake River canyon
and the Blue Mountains commonly consists of massive to poorly stratified, light colored, silt and
very fine sand (also called loess), (Figure 6) (Grolier and Bingham, 1971; Rigby and others,
1979; Kiver and others, 1989; McDonald and Busacca, 1989; Baker and others, 1991; Busacca
and others, 1992; Busacca and McDonald, 1994; Berger and Busacca, 1995; Schuster and
others, 1997). Loess commonly is pedogenically altered (e.g., display evidence of soil forming
processes, including animal burrows and rooting), in some areas contains air fall ash, and can
display evidence of multiple, stacked and superimposed soil horizons reflecting subtle changes
in climate and erosion conditions in the region during the Quaternary. Caliche can be present in
the loess. This loess also is referred to on some maps and in some reports as the Palouse
Formation or Palouse loess.

Loess generally is thought to consist of glacial “rock flour”. The source of this rock flour is
interpreted to be the Cordilleran and Continental ice sheets. Rock flour derived from glacial
erosion is thought to have been reworked (transported) and deposited by wind across much of
the region during the Pleistocene (Rigby and others, 1979; Swanson and others, 1979a, 1980;
Stoffel and others, 1991; Baker and others, 1991; Busacca and McDonald, 1994). Air fall ash
found intermittently within the loess came from volcanic eruptions in the Cascade Range.
Caliche, where found in the loess, suggests semi-arid conditions periodically occurred in the
region in the Quaternary.

Across the study area loess generally covers unforested upland surfaces but is thin to absent
from the modern active river and stream valleys and most tributary valleys which are cut into
underlying basalt bedrock. Loess deposits may range from less than 1 foot to more than 100
feet thick (Rigby and others, 1979; Stoffel and others, 1991; Busacca and McDonald, 1994;
Schuster and others, 1997). In the Columbia Basin, Baker and others (1991) identify multiple
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loess units that range in age from more than 1 million years in age to less than 10,000 years in
age. Based on mapped trends loess appears to predominantly overlie basalt bedrock. This
contact is disconformable, although the extent of incision, if any, into underlying basalt bedrock
is not well known.

2.1.3 Quaternary alluvium and mass wasting deposits

Uncemented and nonindurated sandy to gravelly strata is found in many of the stream valleys
and canyons which cross the project area. These gravely deposits generally are basaltic, have a
silty to sandy matrix, and contain thin silty to sandy interbeds. Reviewing driller’s information on
water well logs suggests these strata are very variable in thickness, ranging from less than 1
foot to several tens of feet thick.

These basaltic clastic strata are inferred to have been deposited in two main ways. Well
stratified occurrences of moderately to well rounded gravel represent stream deposition in the
stream cut valleys and canyons which transect the area. Massive, generally more matrix-rich
occurrences of these gravels, occurring at the base of slopes and in alluvial fans at the mouths
of tributary canyons are interpreted as mass-wasting and as debris flow deposits from storm
generated flash flood events. The mass wasting deposits may be locally well cemented (usually
with caliche) while stream deposited gravels generally display little or no cement. These
uncemented and nonindurated gravels are interpreted to record deposition in local streams
incised into the area and streams draining off the adjacent Blue Mountains.

The age of these sand and gravel deposits is not well constrained. In some parts of the region
these strata are found underlying loess and Touchet Beds. In the modern stream drainages
these gravelly sediments are interpreted to be actively deposited and they may be
contemporaneous with other Quaternary deposits. Based on these stratigraphic relationships
Quaternary alluvium and mass wasting deposits predate, are contemporaneous with, and post-
date Pleistocene cataclysmic flooding, giving these deposits ages of as little as a few thousand,
hundreds, or even tens of years old to as old as 1 million years or more.

2.2 Mio-Pliocene suprabasalt sediments

Compilation geologic maps of the project area suggest the presence of indurated coarse
clastics on localized terraces in and adjacent to the Snake River canyon. If present, these strata
would likely be equivalent to Mio-Pliocene conglomerate found in the nearby Walla Walla Basin
and more distant Pasco Basin. In the Pasco Basin these strata are known as the Ringold
Formation. For this assessment we could not find any information describing the presence of
these deposits outside of the Snake River Canyon. If they are present elsewhere in the project
area, one would expect to find them occurring as thin, discontinuous terraces in tributary valleys
and buried beneath loess on upland surfaces.

2.3 Columbia River Basalt Group (CRBG)

The predominant stratigraphic unit underlying the project area is the Columbia River Basalt
Group (CRBG). Collectively, the CRBG consists of a thick sequence of more than 300
continental tholeiitic flood basalt flows that cover an area of more than 164,000 km? in
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Washington, Oregon, and western Oregon (Tolan and others, 1989). The CRBG virtually
underlies the entire project area except, where pre-CRBG rocks crop out in deeply incised
canyons in the Blue Mountains. The total estimated volume for the CRBG is greater than
174,000 km? (Tolan and others, 1989), with the maximum thickness of over 3.2 km occurring in
the Pasco Basin area, based on geophysical and deep hydrocarbon exploration well data
(Reidel and others, 1982; 1989a). CRBG flows were erupted during a period from about 17 to 6
million years ago (Ma) from long (10 to >50 km), north-northwest-trending linear fissure systems
located in eastern Washington (WRIA 35 area), northeastern Oregon, and western Idaho.
Although CRBG eruptive activity spanned an 11-million-year period, most (>96 volume %) of the
CRBG flows were emplaced over a 2.5-million-year period from 17 to 14.5 Ma (Swanson and
others, 1979b; Tolan and others, 1989).

The following sections summarize CRBG physical characteristics and stratigraphy.

2.31 Physical characteristics of CRBG flows

2311 Mode of emplacement—sheet vs. compound flows and intracanyon flows

Rate and volume of lava erupted, lava composition/temperature (rheology), vent geometry,
topography, and environmental conditions all play significant roles in the eruption dynamics and
overall geometry of individual basalt lava flows or flow fields (Shaw and Swanson, 1970;
Beeson and others, 1989; Reidel and Tolan, 1992; Reidel and others, 1994; Hon and others,
1994; Keszthelyi and Self, 1996; Self and others, 1996; Reidel, 1998). There are two basic
types of flow geometries, compound and sheet.

A compound flow develops when a lava flow advances away from its vent in a series of distinct
and separate lobes (flows) of flowing lava. Each lobe is subsequently covered by later lava
lobes as the emplacement of lava continues. This results in the accumulation of elongated
bodies of basalt with numerous, local, discontinuous, and relatively thin layers of basalt lava.

In comparison, a sheet flow results when lava is erupted at a high rate and is able to advance
away from the vent as a single, uniform, moving sheet of lava. This type of flow consists of a
relatively extensive, single layer or “sheet” of lava. Each successive sheet flow will create a
similar layer, with the flow boundaries being delineated by distinct vesicular flow tops and flow
bottoms. Individual, large-volume CRBG flows (especially Wanapum and Grande Ronde
Basalts) display characteristics consistent with sheet flows (Swanson and others, 1979b;
Beeson and others, 1985, 1989; Tolan and others, 1989; Reidel and others, 1989b; Beeson and
Tolan, 1990, 1996; Reidel and Tolan, 1992; Reidel and others, 1994; Reidel, 1998). CRBG
flows typically exhibit the complex features associated with compound flows only at their flow
margins or proximal to their vents (Beeson and others, 1989; Reidel and Tolan, 1992; Reidel
and others, 1994; Beeson and Tolan, 1996; Reidel, 1998).

A much less common mode of emplacement for CRBG flows is as an intracanyon flow. In this
case, an advancing CRBG sheet flow encounters a major river canyon that serves to channel
the lava into a ready-made conduit to the west. These paleoriver canyons allowed some CRBG
flows to travel significantly greater distances than they might have as sheet flows. A number of
Saddle Mountains Basalt flows within the project area occur as intracanyon flows (Swanson and
others, 1980; Ross, 1989).
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2.31.2 Rate of emplacement

Two differing models have been suggested for the emplacement of huge-volume CRBG flows:
(1) rapid emplacement, on the order of weeks to months per flow (Shaw and Swanson, 1970;
Swanson and others, 1975; Wright and others, 1989; Reidel and Tolan, 1992; Reidel and
others, 1994; Beeson and Tolan, 1996; Reidel, 1998); or (2) slow emplacement, on the order of
many years to centuries per flow (Self and others, 1991, 1993, 1996; Long and others, 1991;
Finneamore and others, 1993; Murphy and others, 1997). Both field evidence and laboratory
evidence to date (Swanson and others, 1975; Mangan and others, 1986; Wright and others,
1989; Reidel and Tolan, 1992; Reidel and others, 1994; Beeson and Tolan, 1996; Ho and
Cashman, 1997; Reidel, 1998; Ho, 1999) appear to favor a rapid, laminar-flow model. Evidence
supporting the rapid emplacement model includes the following:

e The internal structure of CRBG flows (discussed in the next section) is relatively simple.
The slow emplacement model requires low lava discharge that would produce very
distinctive flow features such as lava tubes and lava inflation structures, resulting in a
relatively complex internal arrangement of flow structures (Chitwood, 1994; Hon and
others, 1994; Self and others, 1996). These complex flow features are rarely found
within a CRBG flow except at the margins of flows. The pervasive presence of simple
internal flow structures in CRBG flows supports a rapid emplacement model (Reidel and
Tolan, 1992; Reidel and others, 1994; Beeson and Tolan, 1996; Reidel, 1998).

e Petrographic examination of quenched CRBG lava (e.g., rinds from pillow lava) from
medial to distal parts of the flows has shown that the crystallinity is no greater than that
of the glassy selvage zones of feeder dikes. This indicates that little or no crystal
nucleation and growth occurred from the time the lava was erupted to when it reached
its most distal point—distances ranging from 200 to >500 km (Shaw and Swanson, 1970;
Swanson and others, 1975; Mangan and others, 1986; Wright and others, 1989; Ho and
Cashman, 1997; Ho, 1999). These observations are not consistent with a very long
duration (slow) emplacement model and instead support the huge-volume, rapid
emplacement model.

e A basalt glass composition-based geothermometry study has been conducted for the
Ginkgo flow (Frenchman Springs Member, Wanapum Basalt) along its 500-km length to
provide a quantitative estimate of heat loss (Ho and Cashman, 1997; Ho, 1999). Results
suggest cooling rates of 0.02 to 0.04 °C/km for the Ginkgo flow, which are substantially
lower than cooling rates observed in active and historic basalt flows (Ho and Cashman,
1997). These data favor a rapid emplacement model over a slow emplacement model
that would require extreme thermal efficiencies to produce these cooling rates (Ho and
Cashman, 1997, p. 405).

e The lack of extensive pillow/hyaloclastite complexes along the length of CRBG
intracanyon flows favors a rapid emplacement model (Reidel and others, 1994; Beeson
and Tolan, 1996).

If CRBG intracanyon flows were emplaced over very long periods (years to centuries), dammed-
off rivers would have overtopped the lava dams in a period of a few months and reestablished
their presences within their canyons years before the flows reached their most distal points. This
situation would result in rivers encountering the advancing flow fronts, causing the continuous
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creation of large quantities of hyaloclastic debris and pillow lava. Features consistent with this
aspect of a slow emplacement model are not found along the length of CRBG intracanyon
flows.

2.3.1.3 Intraflow structures

Examination of vertical exposures through the CRBG reveal that they all generally exhibit the
same basic three-part internal arrangement of intraflow structures (Figure 7). These features
originated either during the emplacement of the flows or during the cooling and solidification of
the lava after it ceased flowing. Intraflow structures are generally referred to as the flow top, flow
interior, and flow bottom. The combination of a flow top of one flow and the flow bottom of the
overlying flow is commonly referred to as an “interflow zone” (Figure 7).

Flow Tops: The flow top is the crust that formed on the top of a molten lava flow. Flow tops
commonly consist of glassy to very fine-grained basalt that is riddled with countless spherical
and elongated vesicles. Vesicles represent gas bubbles that were trapped (frozen) as the flow
solidified. These gases were originally dissolved within the magma, but reduction in pressure
(and subsequent decrease in temperature) as the magma reached the surface allowed these
gases to come out of solution. CRBG flow tops can display a wide range of variation in both
their physical character and thickness (U.S. Department of Energy, 1988).

The physical character of flow tops falls between two basic end-members: (1) a flow top breccia
(Figure 8) and (2) a simple vesicular flow top (Figure 9). There characteristics are summarized
as follows:

e A flow top breccia (Figure 8) consists of angular, scoriaceous to vesicular fragments of
basaltic rubble that lie above a zone of nonfragmented, vesicular to vuggy basalt. Flow
top breccias can be very thick (over half the flow thickness, which can be more than 30
m) and laterally extensive (U.S. Department of Energy, 1988). There are two models for
the origin of CRBG flow top breccias: (1) the scoria (breccia) was originally produced
along the linear fissure system and subsequently rafted away on top of the flowing lava,
and (2) an autobrecciation process similar to that which creates aa flows in Hawaii
occurred. In either case, laterally extensive flow top breccias are relatively common
features within the CRBG.

e A simple vesicular flow top (Figure 9) commonly consists of glassy to fine-grained basalt
that displays a marked increase in the density of vesicles toward the top of the flow (U.S.
Department of Energy, 1988; McMillian and others, 1989). Vesicles may be isolated or
interconnected, resulting in lower or higher permeability and effective porosity,
respectively (U.S. Department of Energy, 1988). Tensional cooling joints related to flow
top formation/flow emplacement can augment the overall permeability of this feature.

Flow Interiors: CRBG flow interiors typically consist of dense, nonvesicular, glassy to crystalline
basalt that contains numerous contraction joints (termed “cooling joints”) that formed when the
lava solidified. CRBG cooling joints most often form regular patterns or styles, with the two most
common being columnar-blocky jointing (Figure 10) and entablature-colonnade (Figure 11).
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e Columnar-blocky jointing (Figure 10) is usually associated with thinner (more fluid) flows
and typically displays mostly vertical, poorly to well-formed polygonal columns that can
range from 0.5 m to >3 m in diameter. The vertical columns are often cut by horizontal to
subhorizontal cooling joints.

e Entablature-colonnade jointing (Figure 11) is usually observed in thicker (more viscous)
flows and displays a more complex pattern than that forming within a single flow. The
entablature portion displays a pattern of numerous, irregular-jointed small columns to
randomly oriented cooling joints that abruptly overlie a thinner zone displaying well-
developed columnar jointing. The transition zone between the entablature and the basal
colonnade may be very narrow, generally less than a centimeter in width. Typically the
entablature is thicker than the basal colonnade, often making up at least two-thirds of the
total flow thickness. The entablature is assumed to form due to cooling from the top of
the flow downward, and the colonnade forms due to cooling from the bottom upward.
Another characteristic of entablatures is that the basalt of which they are composed
contains a very high percentage of glass (50 to 95%) in contrast to the colonnade (Long
and Wood, 1986; U.S. Department of Energy, 1988). While entablature-colonnade
jointing style is commonly observed in CRBG flows, it is actually a very uncommon
jointing pattern for lava flows elsewhere in the world. The origin of entablature-colonnade
jointing has been the subject of much speculation and conjecture (e.g., Long and Wood,
1986; Reidel and others, 1994) but has not been resolved.

Regardless of the jointing style of an individual CRBG flow, it is important to note that in the
subsurface 70 to 90 percent of all joints are filled by secondary minerals (Lindbergh, 1989).
These minerals most commonly are clays and zeolites. In addition, it is equally important to
remember that the open joints so typical of outcrops largely are a manifestation of the release of
confining pressure associated with the exposure of these rocks at the Earth’s surface. In the
subsurface, where these rocks are under lithostatic loads, well videos reveal that joints are only
rarely open.

Flow Bottoms: The physical characteristics of CRBG flow bottoms are largely dependent on the
environmental conditions molten lava encountered as it was emplaced (Mackin, 1961; Swanson
and Wright, 1978, 1981; U.S. Department of Energy, 1988; Beeson and others, 1989; Reidel
and others, 1994; Beeson and Tolan, 1996). For example:

e |[f the advancing CRBG lava encountered relatively dry ground conditions, the flow
bottom that resulted typically consists of a narrow (<1-m thick) zone of sparsely
vesicular, glassy to very fine-grained basalt (Figure 12). This type of flow bottom
structure is very common within the CRBG.

e |If, on the other hand, advancing lava encountered lakes, rivers, and/or areas of water-
saturated, unconsolidated sediments, far more complex flow bottom structures formed
(Mackin, 1961; Bentley, 1977; Grolier and Bingham, 1978; Byerly and Swanson, 1978;
Swanson, and Wright, 1978, 1981; Swanson and others, 1979b; Beeson and others,
1989; Bentley and others, 1980; Camp, 1981; Stoffel, 1984; Tolan and Beeson, 1984;
Ross, 1989; Pfaff and Beeson, 1989; Reidel and others, 1994; Beeson and Tolan,
1996). Where advancing lava encountered a lake, a pillow lava complex (Figure 13)
would be created as the lava flowed into the lake. A pillow complex consists of elongated
to spherical lobes of basalt (pillows) set in a matrix of glassy basalt fragments
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(hyaloclastite). The pillows represent subaqueous pahoehoe flow lobes that advanced
down the front of the pillow lava delta. Studies of the active formation of basaltic pillow
lavas in Hawaii (e.g., Moore, 1975) indicate that molten lava can smoothly flow into the
ocean without thermal disruption (phreatic brecciation) as long as a thin film of highly
insulating steam protects the lava. This process allows for the formation of subaqueous
lava tubes (pahoehoe flow lobes that advance and grow in a manner similar to those
observed on land (Swanson, 1973; Hon and others, 1994). Disruption of this insulating
steam barrier (e.g., wave action, currents, and gas explosions within the lava lobe)
allows water to come into direct contact with molten lava, resulting in the production of
glassy debris (hyaloclastite) by phreatic brecciation. CRBG pillow lava complexes and
hyaloclastites are not uncommon features, but their occurrence and distribution reflect
the paleodrainage pattern that existed at the time of their emplacement (Tolan and
Beeson, 1984; Fecht and others, 1987; Beeson and others, 1989; Reidel and others,
1994; Beeson and Tolan, 1996).

A trip through any of the many canyons that are eroded into the project area will reveal
examples of all of the intraflow structures noted here.

2.3.2 Stratigraphy

The CRBG has been divided into a host of regionally mappable units (Figures 2 and 14), based
on stratigraphic position and variation in physical, chemical, and paleomagnetic properties of
flows and packets of flows (Swanson and others, 1979b; Beeson and others, 1985; Bailey,
1989; Reidel, and others, 1989). The CRBG underlying the project area has been subdivided
into four formations, which are, from oldest to youngest, Imnaha Basalt, Grande Ronde Basalt,
Wanapum Basalt, and Saddle Mountains Basalt (Swanson and others, 1980). These formations
have been further subdivided into members defined, as are the formations, on the basis of a
combination of unique physical, geochemical, and paleomagnetic characteristics. These
members can be, and often are, further subdivided into flow units (e.g., Beeson and others,
1985). From youngest to oldest, the following sections (based on existing reports and geologic
maps cited earlier) provide a brief review of the major CRBG units that are present in the project
area.

2.3.21 Saddle Mountains Basalt

The Saddle Mountains Basalt was erupted between approximately 6 million and 13.5 million
years ago from vents in eastern Washington and western Idaho. The time that elapsed between
eruptions ranged from 250,000 to 1,500,000 years, allowing ridges to be uplifted and rivers to
erode canyons. Consequently, Saddle Mountains Basalt flows were generally emplaced as
intracanyon flows that filled existing river canyons and aerially restricted sheet flows that filled
structural basins that formed between adjacent fault and fold uplifted highlands. Both types of
flows are found in the Saddle Mountains Basalt in the project area.

Eight of the ten member subdivisions of the Saddle Mountains Basalt, the Lower Monumental,
Buford, Elephant Mountain, Pomona, Weissenfels Ridge, Asotin, Wilbur Creek, and Umatilla
Members, are present in the project area. All of these units are found in the vicinity of the lower
part of Asotin Creek. In this area these units all accumulated as at least localized sheet flows
that filled a topographic low present in this area during their eruption, between 14.5 and 6 million
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years ago. This topographic low, formed as folds and faults uplifted ridges all around it is known
as the Lewiston Basin.

Outside of the Lewiston Basin, in the western part of the project area in the Snake River canyon
where the Tucannon River meets the Snake River, only the Lower Monumental, Elephant
Mountain, and Pomona Members are shown on compilation geologic maps. South of the project
area the Umatilla Member also occurs in the area now occupied by the crest of the Blue
Mountains. Where these units occur they are interpreted to have been emplaced as intracanyon
basalt flows that at least partially filled paleocanyons incised into and through the Wanapum
Basalt and the upper part of the Grande Ronde Basalt. The other Saddle Mountains units noted
above to occur in the Asotin Creek drainage also may be present in this same area, they simply
are not shown on the compilation geologic maps reviewed for this report.

2.3.2.2 Wanapum Basalt

The Wanapum Basalt, ranging from 14.5 to approximately 15.5 million years in age,
disconformably underlies the Saddle Mountains Basalt. Where present in the project area,
Wanapum Basalt flows are typically sheet flows, recording emplacement over a relatively flat
surface that dipped away from the area now occupied by the Blue Mountains and to the west,
into the Columbia Basin. The paleocanyons and uplifted highs revealed by the distribution of the
younger Saddle Mountains Basalt units were not as well developed during emplacement of the
Wanapum Basalt because of the much shorter period of time (less than a few hundred thousand
years) between Wanapum flows limiting the time for these features to develop.

Wanapum flows are present across most of the project area, except in the south-central and
southeastern areas where they may have been largely removed by post-uplift erosion (Hooper
and Swanson, 1990). Geologic cross sections prepared for this report (Figures 15, 16, 17, 18,
20, 21, and 22) show the basic distribution of Wanapum Basalt units in the project area. They
generally are found on the upper parts of ridges, being completely eroded through in most of the
larger, deeper canyons. In the project area, the Wanapum Basalt is formally divided into four
members.

Of the uppermost two Wanapum Basalt members, the Roza Member and Priest Rapids
Member, only the Roza is shown on compilation maps. Interpreting the distribution of the Roza
Member shown on these maps, it originally covered most of the project area, although today
much of it has been removed by erosion. In the upland areas between the Snake River and
Blue Mountains crest, especially in the Tucannon River and Pataha Creek drainages, the Roza
Member is inferred be buried beneath loess on many of the ridges and highland areas
separating canyons.

The most widespread Wanapum Basalt member in the project area is the Frenchman Springs
Member. It occurs underlying almost all upland surfaces from the Snake River, well into the Blue
Mountains within the Tucannon River and Pataha Creek drainages (Beeson and others, 1985;
Gulick 1994; Schuster, 1994). The available geologic mapping reviewed for this project does not
indicate whether or not the Frenchman Springs Member occurs within the Asotin Creek
drainage. In the project area the Frenchman Springs Member may be as much as 300 feet and
it can be subdivided into three subunits, each consisting of one or two flows.
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The oldest Wanapum basalt unit, the Eckler Mountain Member (Swanson and others, 1979b)
generally crops out on ridges across most of the central to east part of the project area. Based
on compilation geologic mapping the Eckler Mountain Member may be the only widespread
Wanapum unit in the Asotin Creek drainage. The Eckler Mountain Member is further subdivided
into three subunits containing one or more flows.

2.3.2.3 Grande Ronde Basalt

The Wanapum Basalt is disconformity underlain by the thickest and most widespread CRBG
unit, the Grande Ronde Basalt. The Grande Ronde Basalt consists of a thick sequence of fine-
to medium-grained, rarely to sparsely plagioclase phyric flows that were erupted from
approximately 16.5 to 15.6 Ma (Reidel and others, 1989b). The Grande Ronde Basalt
comprises approximately 85% of the total volume of the CRBG, individual flow units generally
cover several thousand square miles, but yet the entire formation was all erupted and emplaced
within approximately 900,000 years (Reidel and others, 1989b). Given this, the time between
individual eruptions may have only been a few hundred to a few tens of thousands of years. The
oldest Grande Ronde flows may have been emplaced across an at least locally irregular land
surface developed on pre-existing pre-CRBG rocks. The landscape across which younger
Grande Ronde Basalt flows was emplaced probably was generally a flat, gently west-dipping
surface with little in the way of organized stream drainage and valleys.

The top of the Grande Ronde Basalt typically is marked by a saprolite developed on the
uppermost basalt flow and/or a sedimentary interbed (Vantage Member of the Ellensburg
Formation). Grande Ronde Basalt units underlie the entire project area, with the upper 1,000 to
3,500 ft of the unit exposed in the deeper river and stream valleys found in this WRIA. The
Grande Ronde Basalt is thought to reach its maximum thickness, 6,000 to greater than 8,000
feet, beneath the western portion of the project area (Reidel and others, 1989b). Grande Ronde
flows typically display sheet flow geometries except proximal to their feeder dike/vent systems
(Reidel and Tolan, 1992). Sedimentary interbeds are rarely found within the Grande Ronde
Basalt (Hooper and others, 1979). Feeder dikes and vents for the Grande Ronde Basalt have
been found throughout the project area (Swanson and others, 1980; Reidel and others, 1989b;
Reidel and Tolan, 1992). The type locality for the Grande Ronde Basalt is located within WRIA
35 near the mouth of the Grande Ronde River (Swanson and others, 1979b).

The Grande Ronde Basalt originally was subdivided into four magnetostratigraphic units
(Swanson and others, 1979b). These units are referred to, from the top downwards as the N,
R>, N4, and R4 units. All four magnetostratigraphic units are exposed in the project area
(Swanson and others, 1980; Schuster, 1994). More recently, Reidel and others (1989b)
subdivided the Grande Ronde Basalt into a number of members based on a combination of
stratigraphic, lithologic, geochemical, and magnetic polarity criteria (Figure 14). Wide-scale
geologic mapping that employs this Grande Ronde member nomenclature has not been
undertaken within the project area.

Based on the available compilation geologic mapping reviewed for this project the distribution of
the four Grande Ronde Basalt magnetostratigraphic units is summarized as follows:

e The uppermost Grande Ronde Basalt unit, N, is the only Grande Ronde unit to not
underlie essentially the entire project area. While it is exposed in the Tucannon River
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and Pataha Creek valleys, as well as many of their tributary valleys, it is not found in the
lower part of the Asotin Creek valley. N, Grande Ronde Basalt is absent from the lower
reaches of the Asotin Creek valley below where the creek changes its course towards
the Snake River from a generally northeast flowing to an east flowing direction.

e The R, Grande Ronde Basalt (as well as the Ny and R4) does underlie the entire project
area except where older, pre-CRBG rocks crop out at the Earth’s surface.

Generally in the project area, as one goes upstream, towards the Blue Mountains, stream
valleys cut deeper into the Grande Ronde Basalt section. In the middle Tucannon River valley
(Figures 15 and 16) and Asotin Creek valley (Figure 17) erosion has completely cut through the
N», into the underlying R, Grande Ronde Basalt. Further upstream in these valleys the R; is
completely eroded through and the underlying N, is exposed on canyon walls (Figures 15, 16,
and 17).

2.3.24 Imnaha Basalt

The Imnaha Basalt is the oldest CRBG formation and consists of a series of coarse-grained,
plagioclase phyric flows that were erupted between approximately 17.5 to 16.5 Ma (Hooper and
others, 1979). The Imnaha Basalt is inferred to underlie most of the project area, have a
collective thickness ranging from less than 300 feet to more than 1,000 feet (Hooper and others,
1979; Tolan and others, 1989), and probably was emplaced on an older, irregular, pre-existing
topographic surface. It conformably underlies the Grande Ronde Basalt.

Exposed Imnaha flows tend to display sheet flow geometries and often weather to grus. It is not
uncommon for the vesicles within flow tops to be completely filled with secondary minerals
(zeolites/calcite) (Hooper and others, 1979). Sedimentary interbeds are rarely found within the
Imnaha Basalt. Exposures of the feeder dike system that erupted these earliest CRBG flows are
found south and southeast of the southern boundary of project area, although is believed that
Imnaha feeder dikes may be present beneath the project area (Hooper and Swanson, 1990).

Based on stratigraphic, lithologic, and geochemical criteria, Hooper and others (1979)
subdivided the Imnaha Basalt into the American Bar and Rock Creek units. Flows of the
American Bar unit dominate the lower portion of the Imnaha section while flows of the Rock
Creek unit dominate the upper portion of the Imnaha Basalt. However flows belonging to these
two units interfinger through the entire Imnaha Basalt section (Hooper and others, 1979).

Exposures of Imnaha Basalt are limited within the WRIA 35 area, and absent in the project area.
Imnaha Basalt is exposed within the core of the Lewiston Structure and in the southeastern
corner of WRIA 35 in the Snake River canyon.

2.3.2.5 Ellensburg Formation

A number of sediment interbeds are found interbedded between several CRBG basalt units.
Collectively the interbeds belong to the Ellensburg Formation (Mackin, 1961; Schmincke, 1964;
Grolier and Bingham, 1978; Swanson and others, 1979b; Fecht and others, 1987; USDOE,
1988; Smith and others, 1989) (Figure 2). While existing Ellensburg nomenclature is widely
used and accepted throughout the Columbia Plateau region, it does have problems that can
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create confusion. Individual Ellensburg sediment units are defined on the basis of the basalt
flows that overlie and underlie them and that the defining basalt units in one area are not always
present in other areas. As a result, beyond the terminus of any individual basalt flow, one
Ellensburg "member" can merge into, and become part of another Ellensburg member or
become part of the suprabasalt sediment section.

Although detailed mapping is incomplete within the project area with respect to identifying
Ellensburg Formation units, it is still possible to identify units likely to be present in the project
area based on the available information. The following Ellensburg sediment interbeds are
known to be, or may be, present in the project area:

e North Lewiston gravel, interbed between the Lower Monumental Member and Buford
Member, Saddle Mountains basalt.

e Rattlesnake Ridge Member, interbed between the Elephant Mountain Member and
Pomona Member, Saddle Mountains basalt.

e Selah Member, interbed below Pomona Member, Saddle Mountains Basalt, may include
several un-named interbeds and the Sweetwater Creek interbed, all sediment interbeds
below the Pomona Member and overlying the Umatilla Member, Saddle Mountains
Basalt. May be mapped as undifferentiated Miocene continental deposits in the lower
part of the Saddle Mountains Basalrt (silt, sand, and gravel).

Ellensburg interbeds within the project area display a variety of lithologies, including siltstone
and claystone paleosols and lake deposits and river deposited arkosic to quartzose sand and
conglomerate.

2.4 Pre-CRBG rocks

Pre-Tertiary rocks are inferred to underlie the entire WRIA 35 area and are unconformably
overlain by the CRBG (Swanson and others, 1980). Pre-Tertiary rocks are exposed at several
locations within the WRIA, including:

e In the Tucannon River and Menatchee Creek valleys, small isolated inliers of
metasedimentary and metavolcanic rocks have been found, but the exact age of these
rocks has not been established (Swanson and others, 1980).

e Along the Snake River, upstream of Lower Granite Dam, an inlier of Cretaceous-age
granodiorite is exposed.

e South of the Town of Asotin along the Snake River, several inliers of Triassic-age
metasedimentary and metavolcanic rocks belonging to the Seven Devils Group are
exposed.

2.5 Structural geology

The predominant structural feature in the project area is the generally north to northwest and
northeast dip of the CRBG off the Blue Mountains crest towards the Snake River and into the
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Columbia Basin. This regional dip is imparted to the CRBG because the Blue Mountains were
being uplifted both during and after CRBG emplacement. Given this though, there are several
major differences between the structural setting of the Asotin Creek drainage and the Tucannon
River and Pataha Creek drainages.

2.51 Tucannon River and Pataha Creek areas

As a result of regional dip, strata (N1 Grande Ronde Basalt) exposed in the bottom of the deeper
canyons incised into the Blue Mountains in the upper parts of these drainages are not exposed
down-dip in the northern part of the project area. Instead, these units occur hundreds of feet
below the bottom of the Snake River (Figures 15 and 16). Conversely, the only widespread
Grande Ronde Basalt unit exposed in the bottom of the Snake River Canyon in this part of the
project area (upper part of the N, Grande Ronde Basalt), occurs well above the bottom of the
upper Tucannon River valley (and tributaries) as one moves upstream towards the Blue
Mountains, in the up-dip direction (Figures 15, 16, 20, 21, and 22). In addition, because the Blue
Mountains were being uplifted during CRBG emplacement, Grande Ronde Basalt and
Wanapum Basalt units generally are thinner in the Blue Mountains and thicker to the north in the
Columbia Basin (Figures 15, 16, 20, 21, and 22).

The Tucannon and Pataha portion of the project area is cut by several major fault systems as
well as many small faults. The largest major fault system that transects the area is the Hite Fault
system (Figure 19) (Newcomb, 1965, 1969; Kienle, 1980; Swanson and others, 1980; USDOE,
1988; Tolan and Reidel, 1989). The Hite fault is normal displacement fault with the down side
being to the northwest. Studies of the Hite Fault system (Kienle, 1980; WPPSS, 1981; USDOE,
1988) also have found that it displays evidence of extensive sinistral (left-lateral) oblique-slip
movement. Numerous subsidiary faults and folds are associated with the Hite Fault. Given the
local tectonic regime within the region, localized areas of transtension (horst and graben
structures) and transpression (anticlines and synclines) are expected to be created along, and
between, subsidiary faults. The general location of the Hite Fault system and several other
major faults that transect the project area are shown on Figure 19. Smaller, localized faults are
not shown, but they are likely present in parts of the project area. Note, the northeast oriented
fault shown on Figure 19 west of the Hite Fault is shown on some maps to be a monocline, not
a fault. We show it to be a fault here because the most recent Washington State compilation
maps show it to be a normal fault.

Several low amplitude, northwest trending folds, also are present in this part of the project area
(Figure 19). The largest of these shown on compilation geologic maps of the area is a syncline
that generally follows the course of the lower Tucannon River. Other folds are mapped along the
Snake River canyon upstream of the mouth of the Tucannon River (Figure 19).

2.5.2 Asotin Creek area

In the Asotin Creek drainage regional dip of CRBG strata off the Blue Mountains crest towards
the Snake river is oriented in a more northerly to northeastern direction. Given this however,
there are some significant differences between the Asotin Creek valley and the rest of the
project area.
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The Asotin Creek drainage is transected by a series of generally north-south oriented faults that
cross the creek in the vicinity of it's confluence with Charley Creek. These faults, and several
associated monoclines, are down to the east. Additional faults probably are present in the
Asotin Creek drainage, although they are not shown on compilation geologic maps.

Unlike the Tucannon River and Pataha Creek drainages, several large folds cross-cut the Asotin
Creek drainage. These folds include: (1) anticlines and synclines parallel to the North Fork
Asotin Creek, (2) a low amplitude syncline/anticline pair near where Maguire Gulch enters the
creek (Figure 17), and (3) a large anticline along the drainage divide between the Asotin Creek
drainage and the Grande Ronde River (Figure 18). A large syncline is found south of this
anticline, generally parallel to the Grande Ronde River (Figure 18).
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Section 3: Hydrogeologic Setting

Groundwater in the study area occurs in two principal aquifer systems: (1) the suprabasalt
sediment (or overburden, or alluvial) aquifer system which is primarily hosted by “alluvial
gravels” and Pleistocene Cataclysmic Flood deposits and (2) the underlying CRBG aquifer
system. Very little direct study of these aquifers has been undertaken in the project area.
Consequently, Newcomb's (1965) hydrogeology study of the nearby Walla Walla Basin
becomes a primary reference, supplemented by other Walla Walla Basin (Barker and Mac Nish,
1976; Mac Nish and Barker, 1976; Pacific Groundwater Group, 1995) and regional studies
(Bauer and Vaccaro, 1990). This section summarizes the general hydrogeologic setting, aquifer
recharge, hydraulic continuity, and water quality of the aquifer systems beneath the project
area.

3.1 Suprabasalt sediment hydrogeology

As noted above, little direct information about suprabasalt aquifer conditions in the project area
is available. Therefore, the following summary of the suprabasalt sediment aquifer is based in
large part on informed conjecture based on regional information, surficial geology, and our
experience with similar hydrogeologic conditions in other areas, especially the Walla Walla and
Pasco Basins.

The suprabasalt sediment aquifer system found in the project area occurs as multiple, localized
water-bearing sand and gravel aquifers in stream valleys. Where present, predominantly in the
Snake River Canyon and tributary valleys, including Asotin Creek, Tucannon River, and Pataha
Creek, the suprabasalt aquifer generally is hosted by Quaternary alluvial gravel and Pleistocene
Cataclysmic Flood deposits. The suprabasalt aquifer generally is unconfined. The Geologic
cross sections prepared for this report (Figures 15, 16, 17, 18, 20, 21, and 22) show how little of
the project area is underlain by the various Quaternary sediment units which could potentially
host this aquifer. Given the geographic distribution of these materials, the suprabasalt sediment
aquifer in the project region is generally small and localized.

Very little hydraulic property information is available for the suprabasalt aquifer. However, based
on work in the nearby Walla Walla Basin (Newcomb, 1965; Barker and Mac Nish, 1976) one
can infer some general hydrologic properties for suprabasalt sediment aquifers in the project
area.

e |n the Walla Walla Basin average effective porosity of older, indurated gravel is
interpreted to be approximately 5 percent. In the project area, most gravelly strata which
potentially hosts a suprabasalt aquifer is inferred to be nonindurated to poorly indurated.
Given this, the alluvial gravel and flood deposits inferred to host the suprabasalt aquifer
in the project area is inferred to have a higher average effective porosity.

e Estimates of hydraulic conductivity and transmissivity for the older indurated sediment
found in the Walla Walla Basin range from 1.5x10™ feet/second to 7.6x10™ feet/second
and 10,000 feet?/day to 60,000 feet’/day, respectively. As with effective porosity in the
previous bullet, we suspect hydraulic conductivity and transmissivity would be higher in
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the saturated alluvial gravel and flood deposits we infer dominate the suprabasalt aquifer
where it occurs in stream valleys and canyon in the project area.

Groundwater flow directions in the suprabasalt aquifer in the study area generally will be down
valley, roughly in the same direction as stream flow. However, locally, depending on stream
channel conditions, valley and stream morphology, and the location and depth to bedrock
beneath valley fill alluvium, groundwater flow direction in the suprabasalt sediment aquifer may
be quite variable.

Water table elevation within the suprabasalt sediment aquifer probably will vary seasonally in
response to changes in stream discharge. Generally, the suprabasalt aquifer water table will lie
a few feet to tens of feet below the ground surface and mimic valley floor topography. Again
however, the position and depth of bedrock highs will influence water table elevations at least
locally in this aquifer.

Suprabasalt aquifer recharge is inferred to be from surface water leakage from irrigation ditches,
applied irrigation water, stream loss to the aquifer, direct precipitation, and to a lesser extent
leakage from the CRBG aquifer system (Newcomb, 1965; Barker and Mac Nish, 1976; Pacific
Groundwater Group, 1995). Discharge from the suprabasalt aquifer occurs in a number of ways,
including direct discharge to streams, springs and seeps, pumped water wells,
evapotransporation, and localized leakage to the CRBG aquifer system (Newcomb, 1965;
Barker and Mac Nish, 1976; Pacific Groundwater Group, 1995).

Recharge to, and discharge from, the suprabasalt aquifer system probably is a very localized.
On this local scale both are inferred to be controlled by such things as local stream gradient,
depth of incision (including depth to bedrock below valley fill sediment), width of the valley,
channel position in the valley, and stream flow. In addition, seasonal changes in water budget
probably have a role in this, with aquifer recharge most common during winter and spring high
flows, and aquifer discharge (as baseflow) most common in the summer and early autumn dry
seasons.

Another factor to consider with respect to recharge to, and discharge from, this aquifer is its
potential interaction with underlying basalt aquifers. Intermittently throughout the length of any of
the canyons cutting the project area, aquifer hosting interflow zones will be in direct physical
contact with the valley fill gravel of the suprabasalt aquifer. Depending on the potentiometric
heads in these confined interflow aquifers, they could be recharging the sediment aquifer or be
locations for discharge from the sediment aquifer.

Of the three drainages emphasized for this report the Asotin Creek drainage is interpreted to be
the most effected by bedrock highs, especially above the City of Asotin. Significant reaches of
this stream appear to have a bedrock channel bottom. Where this occurs, the suprabasalt
aquifer will be absent. Within the confines of the City of Asotin the suprabasalt aquifer is inferred
to be in direct hydraulic connection with the Snake River.

No up-to-date groundwater quality data for the suprabasalt aquifer in the study area has been
found.
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3.2 CRBG hydrogeology

CRBG flows host the major (semi-confined to confined) aquifer system utilized within the project
area (Newcomb, 1965). The behavior of groundwater within the CRBG is governed by the
physical characteristics of the CRBG flows, presence of interbedded sediments, and the effects
of secondary processes that modify these physical characteristics (Newcomb, 1965, 1969;
USDOE, 1988; Lite and Grondin, 1988; Wozniak, 1995; Tolan and others, 2000). Generally,
groundwater is localized in interflow zones that act as aquifers while the dense interior portion of
CRBG flows are typically impermeable creating confined conditions (Newcomb, 1969; USDOE,
1988; Wozniak, 1995; Tolan and others, 2000). Given the areal extent of CRBG flows, interflow
zones that serve as aquifers are often laterally extensive (miles to tens of miles) and occur as a
series of "stacked", confined aquifers. Commonly, CRBG aquifers are identified and grouped
together based on which formation hosts aquifers (e.g., Saddle Mountains, Wanapum, and
Grande Ronde Basalt aquifers).

The following sections review hydrologic properties, groundwater occurrence, and groundwater
movement in CRBG aquifers both regionally, and in the project area. A discussion of CRBG
aquifer water quality and temperature in the project area is not included because no information
describing these conditions within the project area was found for this assessment.

3.2.1 Hydrologic properties

Based on investigations conducted in the central Columbia Plateau, a range of hydraulic
properties for CRBG aquifers and interbedded sediments have been measured (USDOE, 1988;
Whiteman and others, 1994; Hansen and others, 1994; Wozniak, 1995; Packard and others,
1996; Sabol and Downey, 1997). Generally:

e Hydraulic conductivity of CRBG flow tops range from 1 x 10 ®to 1,000 feet per day
(feet/day), average 0.1 feet/day, and flow tops serve as the primary conduit for lateral
groundwater flow (USDOE, 1988). Flow top transmissivity ranges from 4 x 10™" to 6 x10*
feet’/day. Effective porosity of flow tops have been estimated to range from 1% to
greater than 20%.

e Horizontal hydraulic conductivity of dense basalt flow interiors range from 1 x 10° to 1 x
107 feet/day, or approximately 5 orders of magnitude less than flow tops (USDOE,
1988). Estimated vertical hydraulic conductivity of the flow interiors range from 1 to 3
times the horizontal hydraulic conductivity determined for flow interiors, or as much as 3
x 107 to 3 x 10 feet/day (USDOE, 1988).

e Ellensburg formation interbeds have been determined to have horizontal hydraulic
conductivities ranging from 1 x 10 to 1 feet/day, averaging 0.01 to 0.1 feet/day for
various interbeds (USDOE, 1988). Values of 1 x 10°to 100 feet/day were reported for
interbeds measured in the Pasco Basin (Sabol and Downey 1997). These sediment
interbeds are relatively rare in the project area.

e Vertically averaged lateral hydraulic conductivities were estimated in Whiteman and
others (1994) to range from 7 x 10 2to 1,892 feet/day for the Saddle Mountains, 7 x 10
to 5,244 feet/day for the Wanapum, and 5 x 10°to0 2,522 feet/day for the Grande Ronde
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aquifers. The values of hydraulic conductivity reported in Whiteman and others (1994)
rely heavily on driller data from many wells that are open to multiple aquifers. These
lateral conductivities integrate values over the entire depth of a given CRBG formation
and therefore, reflect the contribution from inter-layer vertical movement of groundwater
past lava flow pinchouts, faulting, and other discontinuities in individual flow layers.

Specific information on the hydraulic properties of the CRBG aquifer beneath the project area is
limited. Estimates of CRBG aquifer hydraulic properties for use in a digital simulation of the
CRBG aquifer in the nearby Walla Walla Basin were made by Mac Nish and Barker (1976).
Estimates used for the hydraulic properties of the confined CRBG aquifer beneath the Walla
Walla Basin in that study were:

e Transmissivity - available data from aquifer tests indicated transmissivity of 6.2 x 10™
feet’/second to 4.4 x 10" feet’/second for CRBG aquifers. For their model, the CRBG
aquifer in most of the Walla Walla Basin was assigned a range of 5.0 x 10 feet?/second
to 4.0 x 10 feet?/second.

e Storage Coefficient - available data from aquifer tests indicate a storage coefficient of
approximately 0.0002. For their model, the storage coefficient for the CRBG aquifer in
most of the Basin ranged between 0.00047 and 0.00009.

Figure 23 illustrates the basic distribution of hydrologic properties through a sequence of
multiple basalt flows and their intraflow zones.

Based on the available information collected for the preparation of this assessment report, it is
difficult to determine what the hydrologic properties of the various basalt units present in the
project area are. As noted earlier, we did not find any direct measurements. Because of that we
attempted to estimated basic hydrologic conditions from pumping and draw down data listed on
well logs for some of the wells drilled in the project area (Appendix A). Using this data we
calculated specific capacity of a number of wells to qualitatively assess possible aquifer
conditions. Based on the results of that effort we found specific capacities ranging from less
than 1 gallon per minute pumped per foot drawdown (gpm/ftdd) to greater than 100 gpm/ftdd.
However, most specific capacity calculations are less than 5 gpm/ftdd from wells pumping less
than 150 gpm. Given this, one must suspect that CRBG aquifers in the project area generally
have hydrologic properties at the lower end of the data ranges reviewed in the preceding
bullets.

Such a conclusion may be premature because data describing the presence of high yield
aquifers is simply lacking. Most well records for the project area are for low production, domestic
wells and only a few large capacity irrigation or water system supply wells are present. The well
logs for the domestic wells do not provide a good picture of high yield aquifer conditions
because these wells typically are built as small low yield wells that do not stress an aquifer to
the extent necessary to evaluate true aquifer properties. In addition, domestic wells generally
are drilled only deep enough to produce a few tens of gpm. In many cases such production can
be acquired from shallow, low yield aquifers and it is not necessary to drill to deeper, potentially
higher yield aquifers. In fact, a few well logs reviewed for this assessment suggest that deeper,
potentially high yield aquifers underlie the project area, both near the Snake River and closer to
the Blue Mountains. Given the presence of these few wells, one cannot discount the possibility
that high yield aquifers underlie some or all of the project area. If such aquifers are present, they
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would occur in strata that can be physically traced to areas of higher recharge and not deeply
incised by modern stream drainages.

3.2.2 Factors effecting CRBG groundwater occurrence and
movement

Generally, regional groundwater flow within CRBG aquifers is assumed to be toward the
Columbia and Snake rivers (Whiteman and others, 1994; Hansen and others, 1994; Packard
and others, 1996), and locally towards tributary streams (Newcomb, 1965; Mac Nish and
Barker, 1976; Whiteman and others, 1994; Hansen and others, 1994). However, groundwater
occurrence and movement within CRBG aquifers is dependent on the presence and extent of
both intrinsic and external factors and other features associated with the CRBG flows. The
potential affect and impact of these factors on the CRBG groundwater system can range from
benign to profound. Understanding the impact and influence of these factors on CRBG aquifer
is critically important to accurately interpreting the behavior of CRBG groundwater systems.
These factors are discussed below.

3.2.21 Stratigraphic relationships

In relatively undisturbed, intact CRBG rocks the primary aquifer hosting strata are interflow
zones at the contacts between successive flood basalt flows. In such cases, dense flow interiors
are impermeable, or nearly so, making them effective barriers to groundwater movement
between successive interflow zones. They are effective barriers to groundwater movement
between interflow zones because, although jointed, the joints are effectively closed by
secondary clay and zeolite mineralization and lithostatic pressure. Because these aquifers and
aquicludes (or aquitards) are controlled by stratigraphic layering one must consider the extent
and orientation of these layers when considering the occurrence and movement of groundwater
through CRBG aquifers.

The following bullets review factors that effect the extent and orientation of stratigraphic layers,
and hence aquifers and aquicludes, in CRBG aquifers.

e First, CRBG stratigraphic units are only rarely perfectly horizontal. Aimost everywhere
they occur these units (or layers) are inclined by at least one degree (commonly more)
from horizontal. Interflow zones (aquifers) and flow interiors (aquicludes) within these
units are oriented the same way as the stratigraphic units. Any inclination from horizontal
of CRBG layers (and the aquifers within them) will impart a dip which influence up
gradient and down gradient movement controls on any groundwater within these zones.
In effect, groundwater confined within CRBG interflow zones will move down-dip through
these layers in response to gravity and the inclination of the interflow zone pathway.

m This has a profound impact on potential groundwater movement in the project area
because the uplift of the Blue Mountains has imparted a pronounced north to
northwest oriented dip in all CRBG layers in the project area (Figures 15, 16, and
17).

e Although CRBG flows are laterally widespread, they do eventually terminate because
the molten lava from which they form always has a finite extent. Where basalt flows end
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(e.g., flow edges) the dense flow interior which separates overlying and underlying
interflow zones terminates, allowing hydrologic connection between these successive
layered aquifers.

m  On the stratigraphic member level available mapping allows us identify the location
of flow edges in the project area and location of areas where successive layered
aquifers may be in hydrologic connection. One such area is in Asotin Creek where
the uppermost Grande Ronde Basalt unit, N», pinches out.

e Incision into and through CRBG flows, forms “erosional windows” into deeper CRBG
flows. These windows disrupt the lateral continuity of flow interiors, allowing the creation
of potential flow pathways connecting successive interflow zone aquifers. These
erosional windows also act to terminate lateral continuity of interflow zones, limiting the
extent of aquifers hosted by them.

m Erosional windows are common throughout the project area, being formed by the
many deep canyons incised into and through the upland surfaces lying between the
Blue Mountains and the Snake River (Figures 15, 16, 17, and 18). The orientation
and depth of these canyons will have a profound effect on the lateral continuity of
shallower aquifers and the locations of potential recharge and discharge areas from
CRBG aquifers.

e Presence of interbedded sediments (e.g., members of the Ellensburg Formation) may
locally influence the direction and rate of groundwater flow. The physical characteristics
and lateral extent (facies relationships) of the sediments within these interbeds may
allow the interbed to act as either an aquifer or aquitard.

m These sediment interbeds are relatively rare in the Tucannon River and Pataha
Creek drainages and consequently, not expected to exert a significant influence on
groundwater movement and occurrence. However, they are common in the Saddle
Mountains Basalt (upper CRBG) in the Asotin Creek drainage and may exert an
important influence of groundwater occurrence and distribution in this area.

3.2.2.2 Folds

Folds (primarily anticlinal and monoclinal folds) have been noted to affect the occurrence and
movement of groundwater through CRBG aquifers (e.g., Newcomb 1965, 1969; Gephart and
others, 1979; Lite and Grondin, 1988; USDOE, 1988; Packard and others, 1996). In many
cases, folds have been identified as groundwater barriers or impediments that either block or
restrict lateral groundwater movement through the CRBG aquifer system (e.g., Newcomb, 1969;
USDOE, 1988). During the process of folding, slippage parallel to the layers (CRBG flows) will
occur, in part, to accommodate structural shortening. An analogy for this process is seen when
a deck of playing cards are flexed and the individual cards slip past one another to
accommodate the flexure. The tighter the flexure, the greater the “intercard” slippage. In folds,
this type of flexural slip typically occurs within CRBG interflow zones (Newcomb, 1969; Price,
1982; Anderson, 1987) which are the mechanically weakest “layers” in the CRBG. The effects of
this flexural slip on CRBG interflow zones range from minor shearing to nearly complete
destruction (production of fault shatter breccia/gouge material) and is directly related to the
intensity and magnitude of deformation (Price, 1982; Anderson, 1987). This process also
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impacts the original hydraulic characteristics of interflow zones, reducing or even destroying the
permeability of these features (Newcomb, 1969).

The available geologic mapping for the project area suggests that folds in the immediate vicinity
of the Asotin Creek, Tucannon River, and Pataha Creek drainages are typically broad, open,
gentle structures. Therefore, we infer that these folds do not generally form significant barriers
to groundwater movement. However, as noted earlier a very large amplitude anticline separates
the headwaters area of Asotin Creek from the Grande Ronde River drainage. This fold may
form a barrier to groundwater movement between the two drainages.

3.2.2.3 Faults

The presence of faults in the CRBG has been identified as a feature that can potentially impact
groundwater movement (Newcomb 1960; 1961, 1965, 1969; Gephart and others, 1979;
Oberlander and Miller, 1981; Lite and Grondin, 1988; U.S. DOE, 1988; Johnson and others,
1993; Packard and others, 1996). Faults can impact CRBG aquifers in a number of ways,
including:

e Forming barriers to the lateral and vertical movement of groundwater

e Providing vertical pathways (of varying length) for groundwater movement allowing
otherwise confined CRBG aquifers to be in direct hydrologic communication

e Exposing CRBG interflow zones, creating local opportunities for aquifer recharge and/or
discharge.

The ability of faults to affect CRBG aquifers in a variety of ways reflects the potential for both
lateral and vertical heterogeneities in the physical characteristics of fault zones. For example,
the degree of secondary alteration and mineralization along a fault zone may vary. Complete
alteration and/or mineralization of fault shatter breccias and gouge zones would “heal” these
features and produce rock of very low permeability. Variations in the completeness of this
process would produce hydrologic heterogeneities along the trace of the fault. Even if a fault
zone is completely healed by secondary alteration and mineralization, renewed movement
(displacement) on the fault could produce new permeability within the healed shatter breccia
(e.g., USDOE, 1988; Johnson and others, 1993). Therefore depending on the physical
characteristics of the fault zone, a fault can be a barrier to, or a pathway for, groundwater
movement through the CRBG.

A number of both local and regional faults cross-cut the project area, especially in the Blue
Mountains and adjacent uplands. From the information compiled to-date for this assessment, it
is not clear if any of these faults affect groundwater movement and occurrence. However, in the
nearby Walla Walla Basin a number of faults mapped in the eastern portion of the Basin (e.g.,
College Place, Mill Creek, Reser, Promontory Point Faults) are known to influence the behavior
of CRBG aquifers by generally forming barriers to flow (Newcomb, 1965; CH2M HILL, 1997,
1999). It seems likely that at least portions of the faults mapped in the project area have the
potential to influence groundwater movement.
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3.2.24 Feeder dikes

Source vents for many CRBG lava flows are located in the project area, being especially
common in the Asotin Creek drainage. Studies of the exposed portions of CRBG vents
(Swanson and others, 1975; Camp, 1981; Reidel and Tolan, 1992; Reidel and others, 1994;
Self and others, 1997) have found that CRBG lava flows were erupted from 6 to +30 mile-long
(10 to +50 km-long) linear fissure systems. The surface expressions of vent features
associated with CRBG fissure systems are relatively small in comparison to the enormous size
of CRBG flows.

Erosion has exposed portions of the subsurface “plumbing” of these linear fissure systems.
CRBG fissures commonly have a near vertical orientation and are filled with solidified lava. This
feature is referred to as a dike or feeder dike. CRBG dikes range from <5ft to > 100ft- wide
(Swanson and others, 1975, 1979a, 1979b). The basalt which solidified within a dike often
displays horizontal columnar jointing, with the columns bending upward in the center of wider
dikes producing a “herring-bone” pattern. Dike margins are typically marked by a narrow (0.1 ft
to 0.2 ft-wide) glassy selvage.

CRBG dikes found within the project area are most common above the forks in Asotin Creek. In
this area dikes for the upper Grande Ronde basalt and the Roza Member of the Wanapum
Basalt are the most common. They generally have a north-south to northwest-southeast
orientation. Because of their large lateral extent (extending many miles across country), their
great depth (going entirely through the CRBG), and their being filled by basalt having the
physical characteristics of dense flow interiors, dikes may form significant barriers or
impediments to lateral groundwater movement because they extend across large areas.

3.225 Secondary alteration

Secondary alteration and mineralization of CRBG interflow zones can radically change their
physical characteristics which, consequently, can degrade their ability to serve as aquifers. The
most common form of secondary alteration are paleosols developed on CRBG flow tops. If a
sufficiently long hiatus occurred between emplacement of CRBG flows, weathering and
chemical breakdown of the glassy vesicular flow top will occur and lead to soil formation
(paleosol). This process typically alters and destroys the original physical texture of a portion of
the flow top as well as most of its original permeability. The extent of the flow top involved, and
degree to which these paleosols are developed varies tremendously. Factors controlling their
development are thought to be duration of interval before flow top is covered by the next CRBG
flow, absence of sediment cover, and environmental conditions (e.g., climate, vegetation,
paleogeography, etc.). After the emplacement and burial of the CRBG flows, secondary
minerals (e.g., silica, cryptocrystalline quartz, calcite, zeolite, pyrite, clay minerals, etc.) can
partially to completely fill existing void spaces within interflow zones. Process(es) by which
precipitation of these minerals occurs can be very complex and is dependent on a host of
variables including groundwater hydrochemistry, groundwater mobility/mixing rates,
groundwater residence time, and local geothermal regime (USDOE, 1988). The net effect of
secondary mineralization on CRBG interflow zones is a reduction, ranging from slight to total, in
the permeability of these zones.
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3.2.3 Potentiometric levels

Potentiometric (water level) maps for individual CRBG aquifers or groups of aquifers within the
Columbia Basin and project area are available, but problematic. Maps prepared by the USGS
for regional studies, while useful in providing general potential flow directions, are limited
because they are compiled from well data collected from wells open to different parts of the
aquifer system and/or from wells open to multiple aquifers. In fact, in the nearby Walla Walla
Basin, both Newcomb (1965) and Mac Nish and Barker (1976) cautioned that the validity of
some of the water level data used to generate potentiometric maps was suspect due to well
construction. They found that the most common problem in measuring water levels in the region
was the fact that most wells are open to multiple aquifers, and therefore water level data from
them represents a composite (or average) of all aquifers the well is open to.

Given this limitation on the available mapping, one can still use the maps compiled to-date to at
least identify general groundwater flow directions in CRBG aquifers underlying the project area.
From these maps it is clear that groundwater in these aquifers generally flows from the Blue
Mountains to the north and northwest into the Columbia Basin. Groundwater flow in the
shallower aquifers, especially those hosted by the upper N, Grande Ronde and and Wanapum
Basalt will be effected by canyons which cut into and through these shallower aquifers. When
this occurs, these canyons may deflect groundwater flow to discharge points in these canyons.
In some cases these canyons also may act as recharge points for CRBG aquifers (interflow
zones) present on, or just below, the canyon floors. Deeper N, Grande Ronde, and other
deeper Grande Ronde aquifers may not be effected by these canyons except in headwater
areas where these geologic units crop out.

3.2.4 Recharge and discharge

This section presents a brief review of likely recharge and discharge conditions for the aquifers
underlying the project area. Note, this is largely informed speculation as little or no direct work
has been done to address this in the project area.

Shallow (a few tens up to approximately 1000 feet thick) basalt aquifers occurring beneath the
uplands lying between the Blue Mountains and the Snake River probably receive little significant
recharge. Comparing geomorphology to basalt interflow distribution shows that if one traces the
interflow zones which host groundwater in the shallower basalts underlying these uplands in an
up-dip direction (generally to the south and southeast) one will find them truncated by canyons
and ravines before these strata reach higher elevation, higher precipitation, areas in the Blue
Mountains. By cropping out in lower precipitation areas, on essentially semiarid canyon walls,
one would suspect little or no significant recharge of these shallow, upland aquifers. Discharge
from these low yield aquifers will most likely occur in spring lines on canyon walls. Typically
these springs will form where canyons truncate an inclined, water-bearing interflow zone which
is dipping towards the canyon. Generally these aquifers are hosted by the Wanapum Basalt,
and to a lesser degree the upper part of the N, Grande Ronde Basalt.

Basalt units which generally are at or below the most deeply eroded canyons, those of the
Tucannon River and Pataha Creek are inferred to be recharged where their hosting interflow
zones project up-dip and either crop out in the bottoms of major perennial stream valleys or in
the well watered Blue Mountains highlands. Generally these aquifers are hosted by the lower
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part of the N, Grande Ronde Basalt, the R, Grande Ronde Basalt, and the Ny Grande Ronde
basalt. Water which enters these aquifers as recharge moves down-dip away from the Blue
Mountains. Depending on depth of incision and local structural uplifts (folds or faults) aquifers in
the upper part of this Grande Ronde aquifer system (most likely N,) may at least locally
discharge to streams, or the suprabasalt aquifer in deeply incised canyons. Except where such
features occur though, we infer that once water gets into these deeper aquifers there is little or
no opportunity for it to naturally discharge from these deeper aquifers. Faults probably affect
groundwater occurrence and movement in this system. Unfortunately little or no information has
been found yet (if it even exists) upon which we can draw any specific conclusions.

3.2.5 Water quality and temperature

Up-to-date water quality data for the CRBG aquifer system in the project area was not found for
this assessment. However, based on trends summarized in USDOE (1988) sodium, calcium,
chloride, sulfate, fluoride, and iron (to name some of the main constituents of CRBG aquifer
waters) as well as dissolved gases are expected to increase with depth below ground surface.
Water quality constituent concentrations also are expected to be relatively higher in parts of the
aquifer system where lateral aquifer continuity is limited and/or where recharge is slow. One of
the main dissolved gases found in the CRBG west of the project area, methane, is not expected
to be common in the project area because of the inferred absence of the source rocks for
methane, early Tertiary (55 to 40 million years old) sediments, beneath the CRBG in the project
area.

An up-to-date set of CRBG aquifer water temperature data also was not found during this
assessment. However, like water quality data, water temperature also is expected to increase
with depth below the ground surface. The geothermal gradient for the Columbia Basin is at least
1° F increase per 50 feet of depth over the mean annual temperature. In addition, the
geothermal gradient may be higher near at least some of the faults cross-cutting the project
area and where deeper, pre-CRBG rocks are found at or near the surface.

3.2.6 Ellensburg Formation sediment interbeds

Each of the Ellensburg members can be considered as a hydrostratigraphic unit because they
do influence groundwater occurrence and movement (e.g., Gephart and others, 1979; USDOE,
1988; Whiteman and others, 1994; Hansen and others, 1994; Wozniak, 1995; Packard and
others, 1996). However, like the Ringold Formation hydrostratigraphic unit, the Ellensburg
hydrostratigraphic units are highly variable, displaying a range of physical properties which
potentially effect aquifer conditions. Where they are composed of coarse-grained epiclastic
sediments they can potentially host significant, usable quantities of groundwater. However,
were an Ellensburg unit consists of fine-grained sediments, it may form an aquitard. Future
work could refine the distribution of fine- and coarse-grained sediments within individual
Ellensburg Formation hydrostratigraphic units.
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Section 4: Conclusions

4.1

Conceptual model

Based on our review of the limited hydrologic data available, geologic mapping, well
characteristics, and our general knowledge of Columbia Basin hydrogeology we can construct a
general conceptual model of aquifers underlying the project area. Using the information
presented herein, this conceptual groundwater model consists of three basic components: (1)
an geographically limited suprabasalt sediment aquifer system that displays a high degree of
continuity with surface water, (2) basalt aquifers isolated by deeply incised canyons and
restricted to upland areas, and (3) more widespread basalt aquifers generally lying below the
bottoms of the most deeply incised canyons. These systems are summarized in the following
bullets and diagrammatically on Figure 24.

The suprabasalt aquifer system generally is interpreted to be a very localized flow
system. Since it largely is restricted to relatively narrow canyons and valleys,
groundwater flow through it is limited to those same valleys. Depending on local stream
gradient, depth of incision, channel position, and stream flow we suspect that water
movement back and forth between the suprabasalt aquifer and surface streams is
relatively common. In addition, we suspect that there probably is a component of
seasonality to flow in this aquifer, with aquifer recharge (from surface waters) most
common during winter and spring high flows, and aquifer discharge (as baseflow to
streams) most common in the summer and early autumn dry seasons. Additional
controls on where streams contribute to suprabasalt aquifer recharge and gain water
back from this aquifer probably also includes depth to bedrock below valley fill sediment,
width of the valley, and channel position in the valley. Possible interaction between this
aquifer and underlying basalt aquifers is reviewed below.

m Yields from wells in this aquifer vary widely, but generally seem to be less than 200
gpm.

m The one notable exception to this will likely be in the immediate vicinity of the City of
Asotin where the suprabasalt aquifer is likely hosted by coarse, permeabile,
Pleistocene Cataclysmic Flood deposits

The available well data suggests there are multiple, low yield basalt aquifers occurring
beneath the uplands lying between the Blue Mountains and the Snake River. Comparing
geomorphology to basalt interflow distribution shows that probable recharge of these low
yield aquifers is small, which is probably why they are low yield.

m Basically, if one traces the interflow zones which host groundwater in the shallower
basalts underlying these uplands in an up-dip direction (generally to the south and
southeast) one will find them truncated by canyons and ravines before these strata
reach higher elevation, higher precipitation, areas in the Blue Mountains.

m By cropping out in lower precipitation areas, on essentially semi arid canyon walls,
one would suspect little or no significant recharge of these shallow, upland aquifers.
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Consequently, aquifers occurring in these strata will not contain significant volumes
of groundwater, being low yield aquifers.

m To identify the depths of new wells that will likely tap into these low recharge, low
yield aquifers one should simply examine topographic conditions south and
southeast of the well. Generally, the well should be drilled and open to depths below
the deepest canyon in that direction to minimize the chances of building a low yield
low recharge well.

m Discharge from these low yield aquifers will most likely occur in spring lines on
canyon walls. Typically these springs will form where canyons truncate an inclined,
water-bearing interflow zone which is dipping towards the canyon.

Based on the available geologic maps and well pumping information, wells in upland
areas generally less than 500 feet to as much as 1000 feet deep are interpreted to tap
into these low yield aquifers (Figure 24). The specific depths of these aquifers will
depend on the depth of canyon incision in up-dip directions. These low yield aquifers
generally are hosted by the Wanapum Basalt and the upper few hundred feet of the N2
Grande Ronde Basalt. These aquifers rarely yield more than 50 to 100 gpm.

e The third basic aquifer system in the project area is interpreted to be associated with
basalt units which generally are found at and below the most deeply eroded canyons,
those of Asotin Creek, the Tucannon River, and Pataha Creek. Generally these aquifers
are:

m Hosted by the lower part of the N, Grande Ronde Basalt (if present, it is absent from
the lower part of Asotin Creek), the R, Grande Ronde Basalt, and the N1 Grande
Ronde basalt.

m Inferred to be recharged where their hosting interflow zones project up-dip and either
crop out in the bottoms of major perennial stream valleys or in the well watered Blue
Mountains highlands (Figure 24). Water which enters these aquifers as recharge
then moves down-dip away from the Blue Mountains. Depending on depth of incision
and local structural uplifts (on folds or faults) aquifers in the upper part of this Grande
Ronde aquifer system (most likely N,) may at least locally discharge to streams, or
the suprabasalt aquifer in deeply incised canyons. Except where such features occur
though, we infer that once water gets into these deeper aquifers there is little or no
opportunity for it to naturally discharge from these deeper aquifers.

m Faults and feeder dikes may affect groundwater occurrence and movement in this
system. Unfortunately little or no information has been found yet (if it even exists)
upon which we can draw any specific conclusions about which faults potentially act
as barriers to groundwater flow, which might act as pathways to groundwater flow,
and which, if any, might facilitate the movement of deep warm water to the surface.

m The anticline located along the southern edge of the Asotin Creek drainage may form
at least a partial hydrologic barrier, separating this area from the adjacent Grande
Ronde River valley. If so, potential deep aquifer water production in this area also
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may be limited because this structure could restrict or limit potential recharge to
these aquifers.

This aquifer system may be capable of sustaining wells which can produce in excess of
500 gpm. However, since only a few high yield wells penetrate it in the project area it is
difficult to predict with any certainty how this aquifer would respond to increased

development. Also, in the absence of much deep well information there is essentially no
information available upon which to assess deep aquifer water quality and temperature.

Of these three basic aquifer systems we infer the later one to offer the most potential for long-
term sustainable development. This is because it probably is being recharged in the Blue
Mountains. However, given that, it might still be possible to pump parts of this aquifer at rates
greater than natural recharge can sustain. The shallower part of the basalt aquifer system, the
part broken up by canyons incised into the uplands areas, has little potential for significant
recharge. The suprabasalt aquifer system, although relatively small, probably sees significant
amounts of recharge because of its close proximity to surface waters. However, that proximity
also suggests that it rapidly discharges to these same surface streams. Given that, future use of
these shallow sediment aquifers will have to be done in such a manner so as to not have an
adverse impact on stream flows.

4.2 Recommendations

This section presents some basic recommendations for filling data gaps identified during the
course of the assessment and possible approaches to future aquifer recharge efforts done as
part of future groundwater storage efforts.

4.2.1 Filling data gaps

The available data, while providing a good basis for an initial assessment of project area
hydrogeologic conditions, lacks some of the detail necessary to provide a basis for
comprehensive planning and management and for site specific projects. Additional geologic
information is needed to better constrain subsurface geology, including identifying the
distribution of geologic units and aquifers. CRBG aquifer hydrologic property data also is
generally lacking and needs to be collected.

For the shallower parts of the aquifer system the most cost effective way to begin filling gaps in
our understanding of aquifers underlying the project area is to work with well owners (public and
private) to collect information from existing and/or new wells. Examples of how this could work
include:

e Encourage individual land and well owners (private and public) to have well drillers
collect drill cuttings during water well drilling when these drillers are drilling wells for
these owners. An experienced CRBG geologist, logging these cuttings, would be able to
identify specific units present. As this data is compiled a far better interpretation of
subsurface CRBG aquifer distribution and continuity would be developed, including
identifying the major water-bearing aquifers and physical geologic features (folds, faults,
dikes, etc.) that may limit them.
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e As with the previous bullet, the most cost effective way to collect aquifer property data is
to encourage individual well owners (private and public) to have pump test data collected
following construction of new wells and/or when pumps are being rehabilitated. WRIA
staff and/or consultants could provide well owners using basic data collection guidelines
and begin to compile this data in an effort to better understand aquifer properties.

e Again, using existing wells, and working with cooperative well owners, a comprehensive
screening of aquifer water quality and temperature conditions could be implemented.
This data will allow better delineation of aquifer continuity and recharge, including in
conjunction with surface water data, evidence for surface water-groundwater continuity.

For each of these activities a parallel effort focusing on mapping the distribution of the major
aquifer hosting units in the subsurface should be implemented. This subsurface mapping would
be based on existing information, limited field mapping, and updated as new information (as
outlined in the bullets above) is collected. The benefit of this mapping is that it can be used to
place all aquifer data collected into a common framework. This framework gives watershed
planners a common baseline for identifying aquifer conditions, allows them to differentiate
between different parts of the aquifer system, and forms the fundamental scientific basis for
interpreting areas of aquifer recharge, discharge, groundwater flow paths, and barriers to
groundwater flow.

Filling gaps in our understanding of the deeper Grande Ronde parts of the aquifer system can
be, at least in part, done with the same approach noted above. However, given that there
currently are few users of this system opportunity for working with well owners may be limited. If
planning efforts in a specific area require deeper aquifer knowledge it may become necessary at
some point in the future to build a well(s) to collect that information. This would be a very
expensive effort. To control the cost of such a project the preparers of this report would
encourage WRIA planners to define a very specific set of goals and objectives before going
down this road.

4.2.2 Groundwater storage

Based on the review of hydrogeologic information presented herein, the opportunities for
shallow alluvial aquifer storage in the suprabasalt aquifer system probably are limited. This is
because this aquifer system is so limited in volume and extent (probably including available
potential storage that could be used), that there simply are not that many locations where it
could be implemented and have an effect. There may be some opportunity for shallow aquifer
storage in the various drainages covered in this assessment, such as tributary canyon runoff
capture and field flooding in the winter, but collection of the site-specific information needed to
ascertain this was beyond the scope of this assessment and can only be addressed in site
specific investigations. Based on our initial observations we suspect that cost effective shallow
alluvial aquifer storage opportunities may be better addressed as part of other floodplain and
near stream riparian restoration activities that would include some sort of recharge effort as a
component of an overall approach.

Storage in deeper basalt aquifers is problematic for any but the largest water users (probably
municipalities) because of the cost of injecting water into these aquifers. Such users, if they also
have a source of surface water available at least seasonally to use for storage, may be able to
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develop long-term storage and recovery activities that provide for stable water supplies. For
other deep aquifer water users (current and future), future efforts looking at ways to more
effectively use deep aquifers should probably focus on identifying those aquifers that appear to
be able to support long-term pumping. These efforts would include identifying appropriate well
construction for promoting sustainable production and evaluating water production rates that
targeted aquifers can sustain. If such aquifers are identified, they may offer opportunities for
switching surface water withdrawals in areas of limited supply to groundwater withdrawals.
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Quaternary alluvium; numerous unconformities
Pleistocene
1.6
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— 10.5 Elephant Mountain Member Mountains!
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— 15.6 Eckler Mountain Member
Grande
Ronde
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Imnaha
Basalt
w\/\

Unconformity

Mesozoic >60 Pre-Tertiary metasedimentary rocks

Figure 2. General stratigraphic chart for project area.
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Figure 5. Photograph of clastic dike.
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Figure 8. Photograph of typical flow top breccia.
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Figure 11. Photograph of entablature-colonade jointed flow interior.
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Figure 12. Photograph of regular flow bottom overlying a thin flow top breccia.

Figure 13. Photograph of pillow basalt complex at the base of a CRBG flow.
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Appendix A

Well Construction and Hydrologic Information Compiled for Selected Wells
in the Project Area
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